\(\int \frac {1}{\sqrt [4]{a+b x^4} (c+d x^4)^2} \, dx\) [208]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 162 \[ \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )^2} \, dx=-\frac {d x \left (a+b x^4\right )^{3/4}}{4 c (b c-a d) \left (c+d x^4\right )}+\frac {(4 b c-3 a d) \arctan \left (\frac {\sqrt [4]{b c-a d} x}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{8 c^{7/4} (b c-a d)^{5/4}}+\frac {(4 b c-3 a d) \text {arctanh}\left (\frac {\sqrt [4]{b c-a d} x}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{8 c^{7/4} (b c-a d)^{5/4}} \]

[Out]

-1/4*d*x*(b*x^4+a)^(3/4)/c/(-a*d+b*c)/(d*x^4+c)+1/8*(-3*a*d+4*b*c)*arctan((-a*d+b*c)^(1/4)*x/c^(1/4)/(b*x^4+a)
^(1/4))/c^(7/4)/(-a*d+b*c)^(5/4)+1/8*(-3*a*d+4*b*c)*arctanh((-a*d+b*c)^(1/4)*x/c^(1/4)/(b*x^4+a)^(1/4))/c^(7/4
)/(-a*d+b*c)^(5/4)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {390, 385, 218, 214, 211} \[ \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )^2} \, dx=\frac {(4 b c-3 a d) \arctan \left (\frac {x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{8 c^{7/4} (b c-a d)^{5/4}}+\frac {(4 b c-3 a d) \text {arctanh}\left (\frac {x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{8 c^{7/4} (b c-a d)^{5/4}}-\frac {d x \left (a+b x^4\right )^{3/4}}{4 c \left (c+d x^4\right ) (b c-a d)} \]

[In]

Int[1/((a + b*x^4)^(1/4)*(c + d*x^4)^2),x]

[Out]

-1/4*(d*x*(a + b*x^4)^(3/4))/(c*(b*c - a*d)*(c + d*x^4)) + ((4*b*c - 3*a*d)*ArcTan[((b*c - a*d)^(1/4)*x)/(c^(1
/4)*(a + b*x^4)^(1/4))])/(8*c^(7/4)*(b*c - a*d)^(5/4)) + ((4*b*c - 3*a*d)*ArcTanh[((b*c - a*d)^(1/4)*x)/(c^(1/
4)*(a + b*x^4)^(1/4))])/(8*c^(7/4)*(b*c - a*d)^(5/4))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a
*d)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && Eq
Q[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {d x \left (a+b x^4\right )^{3/4}}{4 c (b c-a d) \left (c+d x^4\right )}+\frac {(4 b c-3 a d) \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )} \, dx}{4 c (b c-a d)} \\ & = -\frac {d x \left (a+b x^4\right )^{3/4}}{4 c (b c-a d) \left (c+d x^4\right )}+\frac {(4 b c-3 a d) \text {Subst}\left (\int \frac {1}{c-(b c-a d) x^4} \, dx,x,\frac {x}{\sqrt [4]{a+b x^4}}\right )}{4 c (b c-a d)} \\ & = -\frac {d x \left (a+b x^4\right )^{3/4}}{4 c (b c-a d) \left (c+d x^4\right )}+\frac {(4 b c-3 a d) \text {Subst}\left (\int \frac {1}{\sqrt {c}-\sqrt {b c-a d} x^2} \, dx,x,\frac {x}{\sqrt [4]{a+b x^4}}\right )}{8 c^{3/2} (b c-a d)}+\frac {(4 b c-3 a d) \text {Subst}\left (\int \frac {1}{\sqrt {c}+\sqrt {b c-a d} x^2} \, dx,x,\frac {x}{\sqrt [4]{a+b x^4}}\right )}{8 c^{3/2} (b c-a d)} \\ & = -\frac {d x \left (a+b x^4\right )^{3/4}}{4 c (b c-a d) \left (c+d x^4\right )}+\frac {(4 b c-3 a d) \tan ^{-1}\left (\frac {\sqrt [4]{b c-a d} x}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{8 c^{7/4} (b c-a d)^{5/4}}+\frac {(4 b c-3 a d) \tanh ^{-1}\left (\frac {\sqrt [4]{b c-a d} x}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{8 c^{7/4} (b c-a d)^{5/4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.40 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.55 \[ \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )^2} \, dx=\frac {\left (\frac {1}{16}+\frac {i}{16}\right ) \left (-\frac {(2-2 i) c^{3/4} d x \left (a+b x^4\right )^{3/4}}{(b c-a d) \left (c+d x^4\right )}+\frac {(4 b c-3 a d) \arctan \left (\frac {\frac {(1-i) \sqrt [4]{b c-a d} x^2}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}-\frac {(1+i) \sqrt [4]{c} \sqrt [4]{a+b x^4}}{\sqrt [4]{b c-a d}}}{2 x}\right )}{(b c-a d)^{5/4}}+\frac {(4 b c-3 a d) \text {arctanh}\left (\frac {\frac {(1-i) \sqrt [4]{b c-a d} x^2}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}+\frac {(1+i) \sqrt [4]{c} \sqrt [4]{a+b x^4}}{\sqrt [4]{b c-a d}}}{2 x}\right )}{(b c-a d)^{5/4}}\right )}{c^{7/4}} \]

[In]

Integrate[1/((a + b*x^4)^(1/4)*(c + d*x^4)^2),x]

[Out]

((1/16 + I/16)*(((-2 + 2*I)*c^(3/4)*d*x*(a + b*x^4)^(3/4))/((b*c - a*d)*(c + d*x^4)) + ((4*b*c - 3*a*d)*ArcTan
[(((1 - I)*(b*c - a*d)^(1/4)*x^2)/(c^(1/4)*(a + b*x^4)^(1/4)) - ((1 + I)*c^(1/4)*(a + b*x^4)^(1/4))/(b*c - a*d
)^(1/4))/(2*x)])/(b*c - a*d)^(5/4) + ((4*b*c - 3*a*d)*ArcTanh[(((1 - I)*(b*c - a*d)^(1/4)*x^2)/(c^(1/4)*(a + b
*x^4)^(1/4)) + ((1 + I)*c^(1/4)*(a + b*x^4)^(1/4))/(b*c - a*d)^(1/4))/(2*x)])/(b*c - a*d)^(5/4)))/c^(7/4)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(342\) vs. \(2(134)=268\).

Time = 4.40 (sec) , antiderivative size = 343, normalized size of antiderivative = 2.12

method result size
pseudoelliptic \(\frac {-\frac {3 \left (a d -\frac {4 b c}{3}\right ) \sqrt {2}\, \left (d \,x^{4}+c \right ) \ln \left (\frac {-\left (\frac {a d -b c}{c}\right )^{\frac {1}{4}} \left (b \,x^{4}+a \right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a d -b c}{c}}\, x^{2}+\sqrt {b \,x^{4}+a}}{\left (\frac {a d -b c}{c}\right )^{\frac {1}{4}} \left (b \,x^{4}+a \right )^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {\frac {a d -b c}{c}}\, x^{2}+\sqrt {b \,x^{4}+a}}\right )}{32}+\frac {3 \left (a d -\frac {4 b c}{3}\right ) \sqrt {2}\, \left (d \,x^{4}+c \right ) \arctan \left (\frac {\left (\frac {a d -b c}{c}\right )^{\frac {1}{4}} x -\sqrt {2}\, \left (b \,x^{4}+a \right )^{\frac {1}{4}}}{\left (\frac {a d -b c}{c}\right )^{\frac {1}{4}} x}\right )}{16}-\frac {3 \left (a d -\frac {4 b c}{3}\right ) \sqrt {2}\, \left (d \,x^{4}+c \right ) \arctan \left (\frac {\left (\frac {a d -b c}{c}\right )^{\frac {1}{4}} x +\sqrt {2}\, \left (b \,x^{4}+a \right )^{\frac {1}{4}}}{\left (\frac {a d -b c}{c}\right )^{\frac {1}{4}} x}\right )}{16}+\frac {d \left (b \,x^{4}+a \right )^{\frac {3}{4}} x c \left (\frac {a d -b c}{c}\right )^{\frac {1}{4}}}{4}}{c^{2} \left (a d -b c \right ) \left (d \,x^{4}+c \right ) \left (\frac {a d -b c}{c}\right )^{\frac {1}{4}}}\) \(343\)

[In]

int(1/(b*x^4+a)^(1/4)/(d*x^4+c)^2,x,method=_RETURNVERBOSE)

[Out]

3/16*(-1/2*(a*d-4/3*b*c)*2^(1/2)*(d*x^4+c)*ln((-((a*d-b*c)/c)^(1/4)*(b*x^4+a)^(1/4)*2^(1/2)*x+((a*d-b*c)/c)^(1
/2)*x^2+(b*x^4+a)^(1/2))/(((a*d-b*c)/c)^(1/4)*(b*x^4+a)^(1/4)*2^(1/2)*x+((a*d-b*c)/c)^(1/2)*x^2+(b*x^4+a)^(1/2
)))+(a*d-4/3*b*c)*2^(1/2)*(d*x^4+c)*arctan((((a*d-b*c)/c)^(1/4)*x-2^(1/2)*(b*x^4+a)^(1/4))/((a*d-b*c)/c)^(1/4)
/x)-(a*d-4/3*b*c)*2^(1/2)*(d*x^4+c)*arctan((((a*d-b*c)/c)^(1/4)*x+2^(1/2)*(b*x^4+a)^(1/4))/((a*d-b*c)/c)^(1/4)
/x)+4/3*d*(b*x^4+a)^(3/4)*x*c*((a*d-b*c)/c)^(1/4))/((a*d-b*c)/c)^(1/4)/c^2/(a*d-b*c)/(d*x^4+c)

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )^2} \, dx=\text {Timed out} \]

[In]

integrate(1/(b*x^4+a)^(1/4)/(d*x^4+c)^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )^2} \, dx=\int \frac {1}{\sqrt [4]{a + b x^{4}} \left (c + d x^{4}\right )^{2}}\, dx \]

[In]

integrate(1/(b*x**4+a)**(1/4)/(d*x**4+c)**2,x)

[Out]

Integral(1/((a + b*x**4)**(1/4)*(c + d*x**4)**2), x)

Maxima [F]

\[ \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )^2} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{\frac {1}{4}} {\left (d x^{4} + c\right )}^{2}} \,d x } \]

[In]

integrate(1/(b*x^4+a)^(1/4)/(d*x^4+c)^2,x, algorithm="maxima")

[Out]

integrate(1/((b*x^4 + a)^(1/4)*(d*x^4 + c)^2), x)

Giac [F]

\[ \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )^2} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{\frac {1}{4}} {\left (d x^{4} + c\right )}^{2}} \,d x } \]

[In]

integrate(1/(b*x^4+a)^(1/4)/(d*x^4+c)^2,x, algorithm="giac")

[Out]

integrate(1/((b*x^4 + a)^(1/4)*(d*x^4 + c)^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )^2} \, dx=\int \frac {1}{{\left (b\,x^4+a\right )}^{1/4}\,{\left (d\,x^4+c\right )}^2} \,d x \]

[In]

int(1/((a + b*x^4)^(1/4)*(c + d*x^4)^2),x)

[Out]

int(1/((a + b*x^4)^(1/4)*(c + d*x^4)^2), x)